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ABSTRACT
A general formulation of the theory of departures from LTE in free-free
emissions and absorption is developed. The problem is treated subject to the
restrictions to steady state and radiative interactions. Particle distribution
function and radiation field are studies separately, special attention is given to
the transfer problem. The possibility of negative absorption (maser action) is

discussed.
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1. INTRODUCTION

The importance of departures from local thermodynamic equilibrium (LTE)
was first recognized in connection with certain astrophysical problems, in
particular, in connection with the interpretation of the spectrum of the outer solar
atmospherel. Sftellar plasmas are, in the observable layers, rather weakly
ionized, so that the major part of the radiation spectrum consists of spectral
lines, i, e., emissions and absorptions involving only bound states, with the free
energy states in LTE., In physical terms this statement implies that the free
energy states of the electrons are distributed according to a Maxwellian distribu-
tion, whereas emission and absorption are connected by Kirchhoff' sllawz.

In many domaines of laboratory physics, however, plasmas are completely
ionized, and the population of bound states can be altogether neglected. Then,
only the free electrons are involved in radiative interactions, and departures
from a Maxwellian distribution of the free energy states.

The purpose of this paper is to outline a general formulation of departures
from LTE in free-free emissions and absorptions. In this report, we restrict
our considerations to steady states, where the change in the population of states
is (during observation times) small compared with the populations themselves,
and to radiative transitions which involve emission or absorption of a single
photon.,

Radiative interactions affect the particle distribution and the spectrum of the
radiation field. There are therefore always two sets of conditions to be con-
sidered, derived from the behavior of the radiation field, and from the behavior

of the particles. Neglecting one set of conditions does mathematically not lead



to any contradiction, but leads to physically invalid solutions, This fact has been
pointed out previously3.

We begin by deriving the steady state condition for the particle distribution
function (Section 2), turning to the radiation field in Section 3, In Sectit;n 4, the
trivial solution (LTE) is discussed. Section 5 deals with some obvious physical
consequences of the steady-state condition, Section é contains a discussion of the
relations between particle distribution function and local intensity of the radiation
field. In an Appendix, the question of possible maser action involving continuous
transitions is discussed.

2. STEADY-STATE CONDITION FOR THE ENERGY DISTRIBUTION OF FREE
PARTICLES

If a steady state has been reached in a plasma, the number of particles
entering a certain energy state must equal the number of particles leaving that
state, This relation then holds for all energy states.

Consider an arbitrary state with energy Eo, populated by N(EO) dEo
particles per unit volume., Neglecting non-radiative transitions, the following

processes will occur: the particle may absorb a quantum

-]

from the indident radiation field and move up to the energy level

E1=E°+ Q, (2)

or it may emit a quantum , descending to the energy level

E,=E _-Q. (3)



The number of these processes per unit time depends on the interaction
mechanisms (bremsstrahlung, cyclotron radiation, Cerenkov radiation, etc.),
on the local intensity of the radiation field (absorption and induced emission only),
and on the number of particles N(E) available,

The pertinent quantities were defined and discussed in detail in a previous
publicationz. We recall that the number of particles in the energy range E, E+dE
has the dimension [N(E)dE]= cm-3, so that the LTE - distribution (Maxwell

distribution) reads

1
-3/2 e-E/KT eldE.

N(E)dE = 47N _ 3 (vKT) (4)

Writing the radiation field too in terms of energies () instead of angular frequen-
cies (w), we have [Iﬂdﬂ} = erg/cm2 sec sterad, so that in LTE (Planckian distri-

bution)

3
1d2=B d= —2— [VET 117} g, (5)
Q Q 332
47 n C
Later on, the abbreviation
H = 41r3n3c2 [erg3 cm® sec sterad] (6)

will be used.
The relations between the cross sections of spontaneous emission, absorption

. .. 2
and induced emission read

in

Ho
Q = — Q
Q P

w



and
Ho,f £
Lo "3 VEm Wp - (8)

In the following,

QE,N) = Qg
(9)

2 . .

where E=m v2/2 is the energy of the upper state from which the spontaneous

emission takes place. The probability coefficient Q then has such a dimension
- -1

that [Q(E,Q)dQ]= sec ! steraa™!.

We are now ready to write down the number of incoming (n+) and outgoing

{(n ) processes for the arbitrary energy state EO:

(e o}
H
n, = S N(E, +2) QE, +D,Q) [1+ }Ti I]d0 +
© E, (10)

+ ) NE, - 0) QB 31040

o

and

oo —
(E+Q M

n_ = SN(E ) QE, +Q,2)y—2—" 221.dQ +

0 ° 1 E, m3 %

o) Eo
Ho
, + g N(Eo) Q(EO,.Q) 1+ E)__Sln] dfl .
(¢)

(11)



In steady state,
-t (12)

or, after some algebra, 90

QE,+0,0) B, +0,0 {da -

o E
° (13)
S Qe ) {E,afan .
0 5
The bracket symbol is defined by the following expression

H .

= I —2 [N(x) -\ — N(x -y)] . (14)

{xy] =N@ 1 53 W00 -5y N ]

In physical terms, Q(EO,Q). {EO,Q} represents the difference (positive or
negative) between the number of absorption processes (upwards) and emission
processes (downwards) involving the states Eo and EO-Q. Clearly, if the
states Eo and Eo -Q are in detailed balancing (LTE), the bracket is zero.

The intensity of the local radiation field can always be expressed, for a given
photon energy Q, in terms of a Planckian with a pseudo-temperature T. Similarly,
the number-density of particles in two states differing in energy AE = Q can be
expressed in terms of a Maxwellian distribution, with a fixed total number No of
particles and, again, a pseudo-temperature T'. If the bracket {Eo' n} is zero,

T = T'. It will be shown later that the situation where {Eo' Q}EO for all Q is

equivalent to LTE,



Returning to the general discussion, we write the steady-state condition (13)
in the following form:
Eo

- gcxx,y).{x,y{. o .

o0

SQ(x,y)~ { X,y } . dylx By .y

(15)

for all Eo = const,

Mathematically, the steady-state condition can be visualized in the folloxﬁing
way: over the x-y plane, the function Q(x, y). {x, y} may be plotted. The steady-
state condition (15) then requires that allong ALL paths outlined in Fig 1, the

integral must vanish.

E =cond
(] wl_%
]

- y >
CE tc?mt'
o = x=E . €o= wel 2=£
Fig.1 ure Fig.2 tower
Let us finally rewrite Eq. (15) in terms of x = E and z = E
upper lower

instead of x and y, where x, y and z are related by

x-z=y,

The result reads

(16)



-

Eo

Q(x, x-z)-{ X, x-zg dxlz . Eo+ fQ(x, x-z)-{x, x-z‘ dz x = Eg * (I7)
0 am-

n|Q/>8

o
The graphic representation similar to Fig 1 is outlined in Fig 2, where now the

function
Q(x, x-z)-i X, X-2 ; = f(x,z) (18)

must be plotted vs. x and z.

3. STEADY-STATE CONDITION FOR THE RADIATION FIELD
Before we discuss the steady-state condtion for the particles, Eq. (17), any
further, let us briefly glance at the conditions which a stationary state imposes
on the radiation field. So far, the radiation field entered our description only

through 1

o 28 parameter in the bracket function {x, y} . We shall see presently

that in order to conserve radiative energy, only a considerably weaker condtion
must be satisfied, but that self-consistent solations to any given problem are
;ubject to a set of additional requirements, outlined in Section 6.

There are two characteristic differences between the radiation field and the
particle distribution. First, the particles are stationary, whereas the radiation
field consists of photons entering and leaving a certain volume element, Second,
the number of particles before and after a radiative interaction is conserved in
steady state, whereas the number of photons may increase or decrease as a
result of these radiative interactions. In fact, a typical problem in radiation
theory is the flow of radiation through a plasma in which the total radiative energy

is of course conserved, but in which the high energy photons, for example, are



broken up into several low energy units.

Hence, the only condition imposed on the radiation field under stationary
conditions is that the total radiative energy at each point is conserved. This
quantity is found by multiplying the number of transitions involving a state Eo

by the appropriate energy £, and then integrating over all states Eo from 0 to oo,

i.e., by forming

a0 oo Co X
Sdz S dx . f*(x,2) = Sdl‘.x Sdz - f*(x,z) = 0, (19)
o 2 ° )
where now
f*(x,z) = (x - z) Q(x, x~-2) { X, x-z‘ . (20)
X 4
/
_/
4
—7
7
,___;
|/
L/
—
2z
Fig.3 ‘,

Mathematically, the two representations (19) correspond to the two possible
orders of integration in Cartesian coordinates of the function f*(x, z) over the
shaded area in Fig 3. The equality of integrals of this type is shown in texts on
analysis, for instance, in Jeffrey's book4. 1dentifying f*(x, z) with his f(y), our

coordinates x and z with Jeffrey's x and y, and letting his t —»c0 [f* elearly

8



vanishes at infinity on physical grounds] , transforms our expressions (19) into
Jeffrey's standard equations.

In physical terms the first integral (19) corresponds to counting first all
transitions leading into a fixed lower level Eo' and then varying Eo {or z ) over
the whole range, whereas the second integral in (19) first counts all transitions
leading into a fixed upper state Eo’ and then varies this upper state Eo (or x)
from 0 to oo.

The steady-state condition for the radiation field is clarly weaker than the
condition for the particle distribution, Eq. (17), since it involves only the
INTEGRAL over expressions of the type (17). It will, therefore, in general not
restrict the validity of solutions compatible with (17). However, the energy
condition (19) is not redundant in the seanse that it is automatically fulfilled for all
solutions to (17), due to the additional factor (x-z) under the integral, |

Finally, self-consistency of solutions imposes a set of conditions developed
in the context of the transfer problem in Section 6.

4, TRIVIAL SOLUTION: LTE

Before we discuss condition (17) in more detail, the existence of a trivial

solution should be mentioned, This trivial solution corresponds to f(x,y) = 0

everywhere. On physical grounds, this means
[x, x-z} =0 for all x,2z, (21)
since a Q which vanishes everywhere implies no radiative interactions whatsoever,

Eq. (21) describes detailed balancing for all energies and energy differences.

Intuitively it is obvious that detailed balancing can only occur in LTE. To show



that the two concepts are equivalent under very general conditions requires, how-
ever, a considerable amount of statistical mechanics, and is far beyond the scope
of this papers. We shall merely VERIFY that for radiative transitions between
continuous energy states detailed balancing and LTE are equivalent,

That LTE is SUFFICIENT for detailed balancing is obvious: inserting a
Maxwellian distribution for N(E) and a Planck function for I Q makes the bracket
symbol (14) vanish identically, i.e., leads to detailed balancing,

Reflection is needed to show that LTE is NECESSARY for detailed balancing.

For this purpose, we write Eq. (14),

{xy] =N@ 4L 3S (N®) 1—;—5 N(x-y)] = 0 (22)
in the form N( ) N(x)
X-y X
= K(y) )
Vx-y x (23)
h
where . 3
K(y) = +1
Ho Iy (24)
does -not depend on x, Using the further abbreviation
G(t) = N@t) /Tt7, (25)
we have the functional equation
G(x-y) = K(y) G(x). (26)
We now expand K(y) around y = 0,
- dK v+ seens
Kiy) = KO + 3| L} (27)
with
K(0) = 1, (28)

Because of Eq. (26).

[dK/dy] s= o0 = Ko (29)

10



cannot vanish in general, since (N(x) must contain the Maxwellian distribution for

which obviously K'o# 0. In fact, it can be shown that if K'o = 0, the normaliz-

ation integral

00
SN(E) E"dE = N ¢ E" (30)
o

diverges, corresponding to an infinite temperature (see below),

Next, we expand G{x-y) around x,

dG
G(x-y) = G(X) + ==y + ... (31)
dx

For y —p 0 we find from Eqs, (26), (27) and (31)

dG
G(x) - ;" vy =[1+ K, y]Gix), (32)

with the solution

-K’ X 33
G(x) = const-e ° ) (33)
or
[ ] _Kl 'E
N(E) dE = const.e ©° .{E\ag . (34)
Eq. (34) represents the Maxwell distribution with
K' =1/KT , (35)
From Eqs. (23) and (24) it is now readily verified that
) PR .':'.9.= [e+K'o‘“ - 1]-1 (36)
2 a3 )

1



(36)

which is the Planckian distribution with the same value (35) for K'o. Hence, we
have verified that the condition { X, y} = 0 is equivalent to LTE.
5. DISCUSSION OF THE STEADY-STATE CONDITION FOR PARTICLES

We return now to the ge neral steady-state condition for particles, Eq. (17),
with the additional condition (19) representing conservation of radiative energy. A
detailed discussion of sufficient and necessary conditions to be satisfied by If2
and N(E) in order to be compatible with Eqs. (17) and (19) will be given in a later
report, It suffices here to mention certain MINIMUM requirements concerning
the bracket function (14).

Since the bracket function must vanish integrated along ALL paths of the type
outlined in Fig 2, there is necessarily at least one point on EACH integration path

for which

{x, x-zi =0 . (37

All these points form a one-dimensional continuum which from obvious geometrical
considerations falls in either one of the two categories:

l. All z-values, 0 < z < oo, fulfill Eq. (37). The corresponding x-values lie
in a range x, < x < oo with X, >0, finite. Similarly, the corresponding y-range
will not, in general, comprise all possible values.

2, Ally = x-z values, 0 < y < oo, fulfill Eq. (37). x > X s
0_<_z§ zo; x°> 0, zo> 0.

Figs 4 and 5 illustrate schematically the two cases. As emphasized before, these

are minimum requirements, and whether in an actual case there exists one of the

12



outlined minimum solutions will depend on the form of Q(E, Q).

Fig.4. Case 1. Fig.5. Case 2.

% §

-
.

ﬂ‘&
i

Assuming a solution of the type illustrated in Fig 5, we find that1_ can be
represented by a Planckian function with a temperature T(Q) which may depend
on Q = y. At the same time, the ratio N(E + Q)/N(E) can be represented for all
E-«alues by a Maxwellian distribution with the same T{0Q)-value from above. Only

if T is independent of Q in the whole plane, thua‘\r x, z} = 0, we come back to

the LLTE -solution. ®

6. RADIATIVE TRANSFER AND STEADY STATE
So far, 1n and N(E) were treated as independent quantities, This procedure,
however, is in general not permitted. In fact, in most practical cases, Iﬂ. is the

sum of all contributions to the emission from the whole plasma surrounding the

specific point under discussior, The emission itself, on the other hand, depends

on N(E).

13



There are numerous cases one might think of which range from the completely

self-consistent problem, in which1_ is SOLELY due to the plasma radiation, to

Q

the opposite extreme, where I_ contains practically only OUTSIDE radiation. The

Q

general problem is described by the transfer equation which under steady-state

conditions readaz

dly /dT,, =85 -1qg (38)
&0
and has the solution I S S (T.) -tn dr
= e
Q' n
a (39)
Q
The optical depth is defined for Eq (39) so that at the plasma point under

study. The integration is extended to infinity, i, e., to the plasma boundary. Any
incoming radiation field at this boundary can then be accounted for by a properly

matched source term SQ. I_ depends, of course, on direction through

Q
d'CQ= %_st, (40)
where s is an arbitrary spatial coordinate, is the absorption coefficient,

In our present terminology, the emission coefficient

(4™

ey =0 g Q(E,Q) N(E)-dE ’ , (41)
Q = const
e}
so that the dimension of erg/cm3 sec sterad. Next,
(9]
®. = -"i‘l.s.- Q(E,Q) [vl-—E- N(E,Q) - N(E)] dEl (42)
Q- o3 E-Q Q = const
Q
{(dimension: cm-l). From Eqs (41) and (42), the source function
-2 -1 -1
8q° en/tn [em™ sec = sterad ] (43)

follows immediately.

14



Hence, in order to obtain a self-consistent solution, IQ shuld be replaced in
Eqgs (17) and (19), i.e., in the bracket function, by the appropriate solution {393)
to the transfer problem, using Eqs (41) - (43) to represent the source function.
The result is then a set of integral equations that contain solely N(E) as unknown.
It should be emphasized that IQ cannot be simply replaced by 593. Such a
procedure corresponds to what may be called ''semi-detailed" balancing, implying
T =@ (44)

because of Eq (39), or
€ = I .
Q ’en S (45)

With the aid of Eqs. (41) - (43), Eq,(45) can be written as

o0
&Q(E,Sl)-N(E)-dE' X =
_ 2 1= cons (46)
Ho g i
= —1 E,N) [y—— N(E-Q) - N(E) ]dE
' a « )[15-:1 (E-2) - NE) ] _Ql: const !
Qo
or, in our previous terr;moinology, as
SQ("’Y)“{ m{ - dx \ y = x-2 = const (47)

Q
for all 2 = y, The path of integration is illustrated in Fig 6,

15



{

Y = 0 =const

\
-t e

lower

Fig.6

This additional condition will in general be compatible with Eq (17) only for

{x, y} = 0, i.e., in LTE,
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APPENDIX: MASER TYPE AMPLIFICATION
Cur definition (42) allows for a very elementary discussion in general terms
of the problem of possible negative absorption, i,e., maser-type amplification
of continuous radiation, This problem has recently been treated by several
authors in view of possible applicationsb.
Since the factor in front of the integral is positive, the problem of negative

€, '8 reduces to the study of

2
Em
g Q(E,Q) ["—"" N(E-Q) - N(E) ]dE = R(Ep) - R(Q2) (48)
[o

In (48) the infinite upper limit is replaced by a formal cut-off parameter Em in
order to ensure finite normalization for strongly non-Maxwellian distribution

functions. Negative absorption occurs, if
Y

|RE,,)| <[Ria)] . (49)
The inequality (49) can, theoretically, be fulfilled in two cases: since Q on
physical grounds is always positive, only the slope as a function of E is of
importance., On the other hand, slope AND sign must be taken into account in
the case of the bracket [ ] In fact, for a distribution of the mathematical form
of the Maxwell distribution, Eq (4), [ ]goes through zero for T - o0, and becomes
negative for formally negative values of T.

Since all known interaction mechanisms lead to transition probabilities that

effectively increase vrith increasing E, a combination of

(1€ 0, @« E-Inl (50)
is of little practical interust, Hence, negative absorption is confined to hypoth-

etical distribution functions whose energy variation is of the form

$+0 (51)

NE)  E ,8>0
17
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